

> """ "" 01.06.04

-

107 , 41 2 . 234 .

. "- , 19.07.2024 .

,,

53BP1 – p53-binding protein 1

ATM - taxia telangiectasia mutated

ATR - ATM-related

ATAD5 - ATPase Family, AAA Domain Containing 5

ATP -

BAC - Bacterial Artificial Chromosome

Cdc - Cell division cycle protein

CMG - Cdc45-MCM-GINS

dNTPs -

DMEM - Dulbecco's Modified Eagle Medium

DPCs - DNAprotein cross-links

dsDNA -

DSB -

EGFP - Enhanced green fluorescent protein

FRAP - Fluorescence recovery after photobleaching

HR - Homologous recombination

HU -

ICLs - Inter-strand cross-links

IR -

 \boldsymbol{LAP} - Localization and affinity purification

MCM - Minichromosome maintenance

MRE11 - Meiotic recombination 11

MRN - Mre11-Rad50-Nbs1

PAR - Poly(ADP-ribose)

PARP - Poly(ADP-ribose) polymerase

PAXIP - PAX Interacting Protein

Pol / / / - / / /

POLD2 - DNA Polymerase Delta 2, Accessory Subunit

PCNA - Proliferating cell nuclear antigen

RFC - Replication factor C

ROI -

RPA - Replication protein A

RNF8 - Ring Finger Protein 8

SDS-PAGE -

SSA - Single-strand annealing

-TLS -

UV -

1.				6
2.				9
2.1.				9
2.2.				9
3.				10
3.1.				10
3.1.1.				10
3.1.2.				11
3.1.3.				11
3.1.4.				12
3.2.				12
3.2.1.				12
3.2.2.	ime-lapse			12
3.2.3.	·		Time-lapse	
			·	12
3.2.4.				12
3.2.5.				12
3.2.6.		(Western blo	pt)	12
4.				13
4.1. C	ellTool -			
				13
4.2.			PCNA RPA	11
101	ПО			14
4.2.1.				14
4.2.2.		ATR		
	RPA			21
4.2.3.		ATM		
PCNA	RPA			26
4.2.4.		ATM	ATR	20
125				20
4.2.3.	IVIKE I I		КГА	
4.2.6.		PARP1/2	RPA	
		HU	ATR	31
4.3.		RPA	PCNA	

4.4	. PCNA POLD2	ATR	
4.5	. PAXIP -		
4.6		(western blot) RPA	PCNA52
5.			53
6.			60
7.			60
8.			61
			65
			65

(Fragkos et al., 2015).

 (.
 ,
 UV

 ,
 (ICLs)
 (DPCs)),

 (Zeman and
 (Zeman and
 (Kotsantis et

al., 2018).

(Técher et al., 2017).

•

,

(DSBs),

(Gaillard et al., 2015).

.

(da Costa et al., 2023).

_

ATR (ataxia telangiectasia and Rad3-related)

,

(Saldivar et al.,

R

ATR

ATR (Brown

(ssDNA), 2017).

/

6

,

,

,

and Baltimore, 2000; de Klein et al., 2000)

ATR (O'Driscoll et al., 2003).

(Bester et al., 2011).

fork reversal (~20%) (~30%) (Sogo et al., 2002; Zellweger et al., 2015).

,

(HU),

uncoupling

ssDNA,

al., 2006; Nedelcheva et al., 2005)

(Toledo et al., 2013).

(DNA fiber analyses)

fork reversal,

BRCA2 BRCA1 HU (Mijic et al., 2017; Ray Chaudhuri et al., 2016; Schlacher et al., 2011), PARP1 (Berti et al., 2013; Bryant et al., 2009). HU iPOND

(Sirbu et al., 2013).

,

(Dungrawala et al., 2015).

(Nakamura et al., 2021;

Rivard et al., 2024).

.

(Pavani et al., 2024; Tubbs et al., 2018; van den Berg et al., 2024).

,

ATR

RPA

,

HU

ATR

,

(Byun et al., 2005; Nedelcheva-Veleva et

30 . RPA PCNA HU , • PCNA RPA • ATR, PARP1, ATM MRE11 . PCNA , 2 RPA , PCNA • ATR RPA • RPA, PCNA, RPA 20% RPA, , ATM . ATR -, 60%, ATM

ATR

.

2.1.

2.2.

.

•

•

- 1. PCNA RPA ATR .
- 2. POLD2 , ATR
- 3. MRE11 PCNA RPA

.

4. PARP1 PCNA RPA

•

- 5.
 - PAXIP

3.				
3.1.				
3.1.1.				
		HeLa Kyot	to	,
BAC	C (Bacterial Arti	ificial Chromoson	ne),	
	•			
		,	BAC	N C
			DAC	$\frac{1}{2} (\text{Poser at al})$
2008a)			(1) (Posel et al.,
2008a). ,		, ECED	mCharmy	ιοςαπζαποή απά αjjinny
purification (LAP)	,	EUFF I	Incherry	
DDA ECI			DCNA mCh	
KI A-LOI	T, TOLD2-LOI		I CINA-IIICII	city.
	(HI	D		ATM ATR
	(III		m	nCherry
PCNA		EGFP-		
		2011		(Aleksandrov et al.
2018)				(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
2010).	,			PCNA
	·	PCNA		
,		T OT UT	, PC3 D	, m145
	RPA-EGEP	PCNA-mCherry	105 D	ui 15
,	1	I CIVIX menerry		
	1.			

HeLa Kyoto RPA1-LAP/mPCNA-mCherry	
HeLa Kyoto POLD2-LAP/mPCNA-mCherry	
HeLa Kyoto PAXIP1-LAP/mPCNA-mCherry	
HeLa Kyoto hPCNA-LAP/mPCNA-mCherry	
PC3 RPA1-LAP/mPCNA-mCherry	
Du145 RPA1-LAP/mPCNA-mCherry	

1:

western blot	-GFP	Roche (Hein et al., 2015)/ pc 10 sc-56
alpha PCNA AB and RPA70/	RPA1 My Bio Sour	rse AB.

2	1	3
э.	T	.

Auxin	Sigma-Aldrich
Bovine serum albumin	Sigma-Aldrich
DMEM, high glucose	Thermo Fisher Scientific
Fetal Bovine Serum	Thermo Fisher Scientific
FluoroBrite DMEM	Thermo Fisher Scientific
GlutaMAX™Supplement	Thermo Fisher Scientific
Paraformaldehyde	Sigma-Aldrich
Penicillin-Streptomycin (10,000 U/mL)	Thermo Fisher Scientific
Phosphate Buffer Saline	EMD Millipore
Ethanol	Sigma
Blasticidin	InvivoGen
Hydroxyurea	Sigma
AZD6738	Thermo Fisher Scientific
KU55933	Thermo Fisher Scientific
Mirin	Thermo Fisher Scientific
BMN673 (Talazoparib)	Selleckchem

CellTool (Danovski et al., 2023).

.NetFramework 4.5 NuGet (<u>https://www.nuget.org/</u>) : LibTiff.Net, Bio-Formats, ikvm, OpenTK, NCalc, Accord.Net, Math.NET, Numerics, Microsoft Solver Foundation. C#, Microsoft Visual Studio IDE (<u>https://visualstudio.microsoft.com/</u>).

ImageJ MultiStackReg (Thévenaz

et al., 1998). Microsoft Office

3.2.

3.2.1. 3.2.2. ime-lapse 3.2.3. Time-lapse 3.2.4. 3.2.5.

•

•

3.2.6. (Western blot)

4.1. CellTool -

, , CellTool,

, FRAP , (2).

_ , CellTool.

CellTool : 1.

(Tracking ROI), 2. 3 , (Static ROI) _

13

time-lapse

,

.

PCNA

,

. RPA

(Chen and Wold, 2014; Fanning

et al., 2006; Maréchal and Zou, 2015).

RPA

(Pasero and Vindig	gni, 2017).	,	RPA
--------------------	-------------	---	-----

time-lapse

,

EGFP-, mCherry RPA, PCNA (Poser et al., 2008b),

.

(BAC)

(Zhang et al., 1998),

,

.

(Hein et al., 2015).

RPA-EGFP

1:3RPA,mPCNA-mCherry1:4.2PCNA (31).spinning-diskairyscan.PCNA, airyscan.-., time-lapse

airyscan

spinning-disk

(dNTPs),

. HU . PCNA RPA , 15 , НU,

,

1 . HU , , 55 . , HU, PCNA, RPA1 .

PCNA/RPA1 . PCNA HU , PCNA , PCNA

. , PCNA PCNA, , ,

PCNA . , HU, .

, PCNA, HU, PCNA, HU, PCNA, , HU (=1). RPA-EGFP , RPA ,

,

HU PCNA -RPA (3). 5 HU, PCNA $(t_{1/2} = 2.06 \pm 0.85)$). PCNA , PCNA, , PCNA . --• , 30% PCNA HU. PCNA -RPA PCNA, .. RPA, HU, • , $(t_{1/2} = 23.9 \pm 2, 1)$ 1. _), RPA , 30% . _ ssDNA -RPA. -, RPA HU 3 40% 90-. RPA , 5 HU, 12 RPA1 . 3), 1-HU (4-5% RPA1 HU 3 HU (4). , , 1 HU. . 1 HU HU, PCNA 15 , $(t_{1/2}\!=\!5.1{\pm}2 \qquad), \qquad ,$ HU. PCNA S-. ,

•

17

RPA

PCNA

RPA

S (van den Berg et al., 2024).

19

,

	59±22.6		PCNA		,	HU.	
		PCN	A				-
	PCNA						
		HU.			,	17.6±6.7%	PCNA
					HU,		
10.4±4.7	(59		HU)).		
		,					,
	15±6.9					HU, PCNA	
3	30						
,	S-				HU.		
	RF	PA1	,		RPA1		
	80.7	±27.7		1		HU.	
, R	RPA1					30 ., (Blackwe	ll et al.,
1996; Gomes	s et al., 1996	; Kim e	t al., 199	2)			
				I	HU,	-	
	2400					,	
	30						
					RPA1,	40 .	
	1.3	RPA1				HU	
	F	RPA1 8	8.9 ±5.2,			9 -	

1-	10mM H	IU			
	,			HU,	10-
	24	(5).		
				RPA	
			,		
	HU				
,		ATR	, RPA		

- PCNA.

- $(t_{1/2} = 5)$	5.6) (17)).		
ATI	R					
			RPA (By	yun et al., 20	005; Nedelcheva	a-Veleva
et al., 2006; Nedelcheva et al.	, 2005; T	oledo et	al., 2013).	,		RPA
	25			H	U,	70%
RPA						
RPA			ssDN	A.		
uncoupling.		ATR	. RPA1	,		,
90-		40%	,			
RPA1		-			,	
iu m,						,
	ВЪ	Δ1			80	ΔTR
, 150	IXI /	A 1		150+15 3	00	AIK
4000			,	150±15.5		
0.6 ± 2.6 DDA 1				•		200
9.0±3.0 KPA1						290
0					AIK	
9 - ,		HU,		KPA1.		
						,
KPA1	,					
	HU			ATR,		
PCNA	RPA				,	
ATR (17).		, RPA			
	,	20%				
					PCNA.	22±16
RPA1 660						
					-	
DONA			60 a /			,
PCNA			60%			HU,
-	. — .			ATR	$(t_{1/2}=6)$	
10) (17).	-				(
)				ATR		

•

AZD6738.

10

HeLa Kyoto, ATR AZD6738.

-

-

•

RPA.

.

•

4.2.4.				ATM	ATR		
]	RPA				
					HU		R
			AZD6738	KU55933,			PCNA
AZD6	- 738 (10).			,		-
		RPA		HU			ATR
(17).						RPA1
			, RPA	A1		-	
				R	•		
				,			
					•		HU
		-			RPA		, .
-			600/			00/	
	15	 	60%	KPA	2	20%	
ATR (~2200	17).			74±18	RPAI	
2200			·				
						RPA	
	R				24		HU (
11,	12).			HU,			RPA
	S			G2	,		
	C_{1}	,				, A TD	
	61.	,		D		AIK,	
	н	T		K			
	III	5					
					•		, D
							K

ATR .

	mir	in (Dupré e	et al., 200	8) -		MRN	,	
	MRE	E11. MR	E11	,				,
					•			,
					MRE11			
	RPA P	CNA						HU.
MII MDE11	111					T T T T		
MREIT				Mirin		HU		
DDA DCNA				IVIII III				
KIA ICNA	L	P	CNΔ		RI	ΟΔ 1		
		1	MRE	11	Ki	711		
·			WILL	HU		ATR		
					Mirin		, ATR	
Н	U							RPA
PCNA (13,	14	17	,).				,
					MRE11			
BR	CA1/2							
426		PARP1/	2			RPA		
			_		HU			ATR
	•						D 4 F	D 1
					,		PAR	KP1
			(BMN	1673)	,	PC	'NA I	RDΛ
			HU-	(075)		ĨĊ	(15
16).		PARP	1					10
PCNA,		HU (t _{1/2} = 3)	(17).		RPA	
						$(t_{1/2} = 2)$	2.5))
(17).		F	RPA			HU		
,					,			PARP
							PC	CNA
		_	(17 ,).			
		PA	RP1					
	HU (Bry	vant et al.,	2009).					
	ATR P	ARP.						

RPA PCNA

RPA PCNA

.() Sobel

.()

.()

4.3.

				PCNA.		,
		PCNA				
				PC	CNA.	
HU	,			HU.		
	(1	8)			(19)
	ATR	AZD67	'38.			
		PCNA				
			PCNA	RPA		
HU						PC3
Du145			,		mCh	erry-
PCNA	EGFP- RPA.			BA	AC	
	HU		А	TR	•	
					RPA	PCNA
				HU		
				(20	24),
	ATR AZD	6738 (21	25),		ATM
	KU55933 (22	26)				
	(23	27).		HU		PCNA
				Не	a Kvoto	
	АТР			1101	Lu Ryoto	, ,
HU	RPA PC3	Du145	,			
		DDA		DC2	, Du145	τ.
	Hal a Vyiata	KI A	-		Du14.)
, 1111	nela kyoto.			KPA		
HU	DC2 = Dv145	DC	12		,	
-	rus Du143,	PC	.5,			
10	HeLa Kyoi					
	PCN	A		HU.		,

PCNA RPA

,

,

_

RPA PCNA

ATM KU55933. ()

RPA PCNA

RPA PC	NA	PC3	
HU		ATR	AZD6738
RPA .()	time-lapse PCNA		.()

ATR

			HU	
POLD2		HeLa Kyoto		
PCNA.				HU
POLD2		PCNA.	HU, POLD2	
		PCNA (28).	
	ATR	AZD6738		
	HU		PCNA	
	POLD2 (29).		
		,	POLD2	

4.5. PAXIP -

- - . -

? PAXIP. UV PAXIP KU55933. PAXIP

(30).

PAXIP PCNA

KU55933		PAXIP,	
PCNA .	,		
PAXIP			(Gong et
al., 2009)	PAXIP		
RNF8/UBC13			
			PAXIP

POLD2 PCNA

30: time-lapse UV HeLa Kyoto PAXIP PCNA KU55933.

EGFP mCherry . SDS- (SDS-PAGE). , RPA-EGFP 1:3 RPA, mPCNA-mCherry 1:4.2 PCNA.

RPA 1: 2.8, PCNA

1: 4.2 (31).

	РСNA изходен	PCNA ед. кл	RPA изходен	RPA ед. кл
белязан	ылоден			
нативен	-	-		

31:

.

RPA PCNA

HeLa Kyoto.

•

Time-lapse

, , ,

CellTool

FRAP,

. ,

CellTool -

,

CellTool

, UV 70 , (Aleksandrov et al., 2018).

. CRC

,

PARP - BMN673.

, . , UV ,

,

,

,

(DNA damage response - DDR)

CellTool

,

,

, , M

. , , , CellTool .

, , , C#, plug-in

CellTool - Windows Linux.

PCNA RPA1

, PCNA . , -S- ,

, - PCNA (80-90%)

HU.

.

PCNA			
RFC	,	ATAD5-RLC	
	(Kang et al., 2024).	,	PCNA,
			PCNA

•

.

PCNA

PCNA,

RPA -S-RPA 90 RPA ATR, Claspin, RPA MCM _ , , RPA (Saldivar et al., 2017; Toledo et al., 2013). ATR RPA , 1 ATR G2 , , , MRE11 ATR RPA1, **BRCA-**MRE11 (Ray Chaudhuri et al., 2016). RPA1 ATR uncoupling (Byun et al., 2005; Nedelcheva-Veleva et al., 2006; Nedelcheva et al., 2005). ATR-, S-, RPA1 ATR 290 () (4.8 .). , 2.4 () , in vitro, Drosophila melanogaster Cdc45/Mcm2-7/GINS (CMG) 6.1 .(Burnham et al., 2019; Kose et al., 2020) 5-10 . GMC (Wasserman et al., 2019). in vitro in vivo, ATR , uncoupling RPA1.

reversal),

,

, ATM ATM • PCNA RPA ATR ATM ATR , -, ATM S , ATR . , ATR, , RPA -• RPA. _ ,

PAXIP. PAXIP.

-, PAXIP. PAXIP PCNA • PAXIP, KU55933

PCNA . , PAXIP . PAXIP RNF8/UBC13 (Gong et al., 2009)

.

•

PARP1

,

. , PARP1	
(Vaitsiankova et al., 2022),	(Maya-Mendoza et al., 2018),
	RECQL1 (Berti et al.,
2013), ,	
(Xie et al., 2	015; Young et al., 2015),
Timeless (Petropoulos	et al., 2024). PCNA
RPA1	
	PARP1/2
talazoparib (BMN673).	, PARP1/2
ATR,	
RPA1	,
PCNA RPA1	
PARP1, .	-
RPA1 ,	,
PARP1	
· ·	-
PCNA ,	
, RPA	-S-
	MRE11. ATR

in vitro

.

,

,

	HU	RPA1		
			RPA1	
		ATR / ATM		
,	ATR,	ATM,		

ATR ATM , ,

,

ATR, ATM

,

(TLS)

,

PARP

,

FBH1,

BRCA1 BRCA2 RIF1, DONSON, mH2A1.2,

,

. , PARP1,

•

DNA2, WRN PrimPol

•

6	
U	•

U•					
1.			HU		
	PCNA	-	RPA1,	HU	
			RPA1	PCNA.	
2.			HU	ATR	
		-	RPA		
	RPA.				RPA1
3.					
			,		
	•		ATR	,	-
			RPA1,		
		RPA1	, ,		
4.		MRE11		PARP1	
			RPA PCNA		
		,	,	ATR	
5.			HU POLD2		
		,	ATR		
		POLD2.			
6					
0.	PAXIP				
7.					
1.					

•

RPA1, PCNA POLD2

.

S-

- 1. Aleksandrov, R., Dotchev, A., Poser, I., Krastev, D., Georgiev, G., Panova, G., Babukov, Y., Danovski, G., Dyankova, T., Hubatsch, L., *et al.* (2018). Protein Dynamics in Complex DNA Lesions. Mol Cell *69*, 1046-1061 e1045.
- 2. Berti, M., Ray Chaudhuri, A., Thangavel, S., Gomathinayagam, S., Kenig, S., Vujanovic, M., Odreman, F., Glatter, T., Graziano, S., Mendoza-Maldonado, R., *et al.* (2013). Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat Struct Mol Biol *20*, 347-354.
- 3. Bester, A.C., Roniger, M., Oren, Y.S., Im, M.M., Sarni, D., Chaoat, M., Bensimon, A., Zamir, G., Shewach, D.S., and Kerem, B. (2011). Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell *145*, 435-446.
- 4. Blackwell, L.J., Borowiec, J.A., and Mastrangelo, I.A. (1996). Single-stranded-DNA binding alters human replication protein A structure and facilitates interaction with DNA-dependent protein kinase. Mol Cell Biol *16*, 4798-4807.
- 5. Brown, E.J., and Baltimore, D. (2000). ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev *14*, 397-402.
- 6. Bryant, H.E., Petermann, E., Schultz, N., Jemth, A.S., Loseva, O., Issaeva, N., Johansson, F., Fernandez, S., McGlynn, P., and Helleday, T. (2009). PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. Embo j *28*, 2601-2615.
- 7. Burnham, D.R., Kose, H.B., Hoyle, R.B., and Yardimci, H. (2019). The mechanism of DNA unwinding by the eukaryotic replicative helicase. Nat Commun *10*, 2159.
- 8. Byun, T.S., Pacek, M., Yee, M.C., Walter, J.C., and Cimprich, K.A. (2005). Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev *19*, 1040-1052.
- 9. Chen, R., and Wold, M.S. (2014). Replication protein A: single-stranded DNA's first responder: dynamic DNA-interactions allow replication protein A to direct single-strand DNA intermediates into different pathways for synthesis or repair. Bioessays *36*, 1156-1161.
- 10. Cortez, D., Guntuku, S., Qin, J., and Elledge, S.J. (2001). ATR and ATRIP: partners in checkpoint signaling. Science *294*, 1713-1716.
- 11. da Costa, A., Chowdhury, D., Shapiro, G.I., D'Andrea, A.D., and Konstantinopoulos, P.A. (2023). Targeting replication stress in cancer therapy. Nat Rev Drug Discov *22*, 38-58.
- Danovski, G., Dyankova-Danovska, T., Stamatov, R., Aleksandrov, R., Kanev, P.-B., and Stoynov, S. (2023). CellTool: An Open-Source Software Combining Bio-Image Analysis and Mathematical Modeling for the Study of DNA Repair Dynamics. International Journal of Molecular Sciences 24, 16784.
- 13. de Klein, A., Muijtjens, M., van Os, R., Verhoeven, Y., Smit, B., Carr, A.M., Lehmann, A.R., and Hoeijmakers, J.H. (2000). Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr Biol *10*, 479-482.
- Dungrawala, H., Rose, K.L., Bhat, K.P., Mohni, K.N., Glick, G.G., Couch, F.B., and Cortez, D. (2015). The Replication Checkpoint Prevents Two Types of Fork Collapse without Regulating Replisome Stability. Mol Cell 59, 998-1010.
- Dupré, A., Boyer-Chatenet, L., Sattler, R.M., Modi, A.P., Lee, J.H., Nicolette, M.L., Kopelovich, L., Jasin, M., Baer, R., Paull, T.T., *et al.* (2008). A forward chemical genetic screen reveals an inhibitor of the Mre11-Rad50-Nbs1 complex. Nat Chem Biol *4*, 119-125.
- 16. Fanning, E., Klimovich, V., and Nager, A.R. (2006). A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res *34*, 4126-4137.

- 17. Fragkos, M., Ganier, O., Coulombe, P., and Méchali, M. (2015). DNA replication origin activation in space and time. Nat Rev Mol Cell Biol *16*, 360-374.
- 18. Gaillard, H., García-Muse, T., and Aguilera, A. (2015). Replication stress and cancer. Nat Rev Cancer *15*, 276-289.
- 19. Gomes, X.V., Henricksen, L.A., and Wold, M.S. (1996). Proteolytic mapping of human replication protein A: evidence for multiple structural domains and a conformational change upon interaction with single-stranded DNA. Biochemistry *35*, 5586-5595.
- 20. Gong, Z., Cho, Y.W., Kim, J.E., Ge, K., and Chen, J. (2009). Accumulation of Pax2 transactivation domain interaction protein (PTIP) at sites of DNA breaks via RNF8-dependent pathway is required for cell survival after DNA damage. J Biol Chem *284*, 7284-7293.
- 21. Hein, M.Y., Hubner, N.C., Poser, I., Cox, J., Nagaraj, N., Toyoda, Y., Gak, I.A., Weisswange, I., Mansfeld, J., Buchholz, F., *et al.* (2015). A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell *163*, 712-723.
- 22. Hickson, I., Zhao, Y., Richardson, C.J., Green, S.J., Martin, N.M., Orr, A.I., Reaper, P.M., Jackson, S.P., Curtin, N.J., and Smith, G.C. (2004). Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res *64*, 9152-9159.
- 23. Kang, S., Yoo, J., and Myung, K. (2024). PCNA cycling dynamics during DNA replication and repair in mammals. Trends Genet *40*, 526-539.
- 24. Kim, C., Snyder, R.O., and Wold, M.S. (1992). Binding properties of replication protein A from human and yeast cells. Mol Cell Biol *12*, 3050-3059.
- 25. Kose, H.B., Xie, S., Cameron, G., Strycharska, M.S., and Yardimci, H. (2020). Duplex DNA engagement and RPA oppositely regulate the DNA-unwinding rate of CMG helicase. Nat Commun *11*, 3713.
- 26. Kotsantis, P., Petermann, E., and Boulton, S.J. (2018). Mechanisms of Oncogene-Induced Replication Stress: Jigsaw Falling into Place. Cancer Discov *8*, 537-555.
- 27. Maréchal, A., and Zou, L. (2015). RPA-coated single-stranded DNA as a platform for posttranslational modifications in the DNA damage response. Cell Res *25*, 9-23.
- Maya-Mendoza, A., Moudry, P., Merchut-Maya, J.M., Lee, M., Strauss, R., and Bartek, J. (2018). High speed of fork progression induces DNA replication stress and genomic instability. Nature 559, 279-284.
- 29. Mijic, S., Zellweger, R., Chappidi, N., Berti, M., Jacobs, K., Mutreja, K., Ursich, S., Ray Chaudhuri, A., Nussenzweig, A., Janscak, P., *et al.* (2017). Replication fork reversal triggers fork degradation in BRCA2-defective cells. Nat Commun *8*, 859.
- 30. Nakamura, K., Kustatscher, G., Alabert, C., Hödl, M., Forne, I., Völker-Albert, M., Satpathy, S., Beyer, T.E., Mailand, N., Choudhary, C., *et al.* (2021). Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination. Mol Cell *81*, 1084-1099.e1086.
- 31. Nedelcheva-Veleva, M.N., Krastev, D.B., and Stoynov, S.S. (2006). Coordination of DNA synthesis and replicative unwinding by the S-phase checkpoint pathways. Nucleic Acids Res *34*, 4138-4146.
- 32. Nedelcheva, M.N., Roguev, A., Dolapchiev, L.B., Shevchenko, A., Taskov, H.B., Shevchenko, A., Stewart, A.F., and Stoynov, S.S. (2005). Uncoupling of unwinding from DNA synthesis implies regulation of MCM helicase by Tof1/Mrc1/Csm3 checkpoint complex. J Mol Biol *347*, 509-521.
- 33. O'Driscoll, M., Ruiz-Perez, V.L., Woods, C.G., Jeggo, P.A., and Goodship, J.A. (2003). A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet *33*, 497-501.

- 34. Pasero, P., and Vindigni, A. (2017). Nucleases Acting at Stalled Forks: How to Reboot the Replication Program with a Few Shortcuts. Annu Rev Genet *51*, 477-499.
- 35. Pavani, R., Tripathi, V., Vrtis, K.B., Zong, D., Chari, R., Callen, E., Pankajam, A.V., Zhen, G., Matos-Rodrigues, G., Yang, J., *et al.* (2024). Structure and repair of replication-coupled DNA breaks. Science *385*, eado3867.
- 36. Petropoulos, M., Karamichali, A., Rossetti, G.G., Freudenmann, A., Iacovino, L.G., Dionellis, V.S., Sotiriou, S.K., and Halazonetis, T.D. (2024). Transcription-replication conflicts underlie sensitivity to PARP inhibitors. Nature *628*, 433-441.
- 37. Poser, I., Sarov, M., Hutchins, J.R., Heriche, J.K., Toyoda, Y., Pozniakovsky, A., Weigl, D., Nitzsche, A., Hegemann, B., Bird, A.W., *et al.* (2008a). BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Methods *5*, 409-415.
- 38. Poser, I., Sarov, M., Hutchins, J.R., Hériché, J.K., Toyoda, Y., Pozniakovsky, A., Weigl, D., Nitzsche, A., Hegemann, B., Bird, A.W., *et al.* (2008b). BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Methods *5*, 409-415.
- Ray Chaudhuri, A., Callen, E., Ding, X., Gogola, E., Duarte, A.A., Lee, J.E., Wong, N., Lafarga, V., Calvo, J.A., Panzarino, N.J., *et al.* (2016). Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature *535*, 382-387.
- Rivard, R.S., Chang, Y.C., Ragland, R.L., Thu, Y.M., Kassab, M., Mandal, R.S., Van Riper, S.K., Kulej, K., Higgins, L., Markowski, T.M., *et al.* (2024). Improved detection of DNA replication forkassociated proteins. Cell Rep *43*, 114178.
- 41. Saldivar, J.C., Cortez, D., and Cimprich, K.A. (2017). The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat Rev Mol Cell Biol *18*, 622-636.
- 42. Schlacher, K., Christ, N., Siaud, N., Egashira, A., Wu, H., and Jasin, M. (2011). Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell *145*, 529-542.
- 43. Sirbu, B.M., McDonald, W.H., Dungrawala, H., Badu-Nkansah, A., Kavanaugh, G.M., Chen, Y., Tabb, D.L., and Cortez, D. (2013). Identification of proteins at active, stalled, and collapsed replication forks using isolation of proteins on nascent DNA (iPOND) coupled with mass spectrometry. J Biol Chem *288*, 31458-31467.
- 44. Sogo, J.M., Lopes, M., and Foiani, M. (2002). Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science *297*, 599-602.
- 45. Técher, H., Koundrioukoff, S., Nicolas, A., and Debatisse, M. (2017). The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nat Rev Genet *18*, 535-550.
- 46. Toledo, L.I., Altmeyer, M., Rask, M.B., Lukas, C., Larsen, D.H., Povlsen, L.K., Bekker-Jensen, S., Mailand, N., Bartek, J., and Lukas, J. (2013). ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell *155*, 1088-1103.
- 47. Tubbs, A., Sridharan, S., van Wietmarschen, N., Maman, Y., Callen, E., Stanlie, A., Wu, W., Wu, X., Day, A., Wong, N., *et al.* (2018). Dual Roles of Poly(dA:dT) Tracts in Replication Initiation and Fork Collapse. Cell *174*, 1127-1142.e1119.
- 48. Vaitsiankova, A., Burdova, K., Sobol, M., Gautam, A., Benada, O., Hanzlikova, H., and Caldecott, K.W. (2022). PARP inhibition impedes the maturation of nascent DNA strands during DNA replication. Nat Struct Mol Biol *29*, 329-338.
- 49. van den Berg, J., van Batenburg, V., Geisenberger, C., Tjeerdsma, R.B., de Jaime-Soguero, A., Acebrón, S.P., van Vugt, M., and van Oudenaarden, A. (2024). Quantifying DNA replication speeds in single cells by scEdU-seq. Nat Methods *21*, 1175-1184.

- 50. Vendetti, F.P., Lau, A., Schamus, S., Conrads, T.P., O'Connor, M.J., and Bakkenist, C.J. (2015). The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo. Oncotarget *6*, 44289-44305.
- 51. Wasserman, M.R., Schauer, G.D., O'Donnell, M.E., and Liu, S. (2019). Replication Fork Activation Is Enabled by a Single-Stranded DNA Gate in CMG Helicase. Cell *178*, 600-611.e616.
- 52. Xie, S., Mortusewicz, O., Ma, H.T., Herr, P., Poon, R.Y., Helleday, T., and Qian, C. (2015). Timeless Interacts with PARP-1 to Promote Homologous Recombination Repair. Mol Cell *60*, 163-176.
- 53. Young, L.M., Marzio, A., Perez-Duran, P., Reid, D.A., Meredith, D.N., Roberti, D., Star, A., Rothenberg, E., Ueberheide, B., and Pagano, M. (2015). TIMELESS Forms a Complex with PARP1 Distinct from Its Complex with TIPIN and Plays a Role in the DNA Damage Response. Cell Rep *13*, 451-459.
- 54. Zellweger, R., Dalcher, D., Mutreja, K., Berti, M., Schmid, J.A., Herrador, R., Vindigni, A., and Lopes, M. (2015). Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J Cell Biol *208*, 563-579.
- 55. Zeman, M.K., and Cimprich, K.A. (2014). Causes and consequences of replication stress. Nat Cell Biol *16*, 2-9.
- 56. Zhang, Y., Buchholz, F., Muyrers, J.P., and Stewart, A.F. (1998). A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet *20*, 123-128.
- 57. Zou, L., and Elledge, S.J. (2003). Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science *300*, 1542-1548.

Dyankova-Danovska T, Danovski G, Uzunova S, Stamatov R, Aleksandrov R, Kanev P-B, Atemin A, Ivanova A, Stoynov S. *In and out of replication stress: PCNA/RPA1-based dynamics of fork stalling and restart at the single-cell level.* **International Journal of Molecular Sciences**. 2024 –

Impact Factor: **4.9**

Danovski G, <u>Dyankova-Danovska T</u>, Stamatov R, Aleksandrov R, Kanev P-B, Stoynov S. CellTool: An Open-Source Software Combining Bio-Image Analysis and Mathematical Modeling for the Study of DNA Repair Dynamics. International Journal of Molecular Sciences. 2023; 24(23):16784.

https://doi.org/10.3390/ijms242316784

Impact Factor: 5.6

19.02.2024: **7**

Aleksandrov, R, Dotchev, A, Poser, I, Krastev, D, Georgiev, G, Panova, G, Babukov, Y, Danovski, G, <u>Dyankova, T</u>, Hubatsch, L, Ivanova, A, Atemin, A, Nedelcheva-Veleva, M, Hasse, S, Sarov, M, Buchholz, F, Hyman, A, Grill, S, Stoynov, S. *Protein Dynamics in Complex DNA Lesions*. **Molecular Cell**, 69, 6, 2018, 1046-1061. https://doi.org/10.1016/j.molcel.2018.02.016

Impact Factor: 14.714

19.02.2024: 136

Ishkitiev N, Micheva M, Miteva M, Gaydarova S, Tzachev C, Lozanova V, Lozanov V, Cheshmedzhieva D, Kandinska M, Ilieva S, Gargallo R, Baluschev S, <u>Dyankova-Danovska</u> <u>T</u>, Nedelcheva-Veleva M, Landfester K, Vasilev A. *Nanoconfined Chlorine Substituted Monomethine Cyanine Dye with Propionamide Function Based on Thiazole Orange Scaffold* – *Fluorogenic Probe for Cells Staining and Nucleic Acids Visualization*. **Molecules.** 2024 –

Impact Factor: 4.2

- 1. 4-6 2020 "The 4th NEUBIAS Conference & Symposium"
- 12-19 2019 "Genome Architecture and Dynamics International Workshop and Summer School", , .

,

.

.

.

- 8-11 2019 "International Physics of Living Systems Network (iPoLS) Annual Meeting", MPI of Biochemistry, , .
- 4. 7-8 2019 "", ,
- 5. 31 2018 02 2018 "The 2nd NEUBIAS Conference",
- 6. 15-17 2017 "The 1st NEUBIAS 2020 Conference"
- 16-18 2017 Humboldt Kolleg "Humboldtians and Scientific Progress in the Central and Eastern European (CEE) Countries", , .
- 8. 19-21 2017 "18th International Workshop on Combinatorial Image Analysis",
- 9. 6-7 2017 "Molecular Biology New Horizons",
- 10. 6-7 2016 "Interdisciplinary PhD Forum",