11 • " " ,, " ,,

I.

COVID-19 (-19) , SARS-CoV-2 , , , , 774 , 7 . . , (WHO-World Health Organization) 2020 ., , . . , . . ,

Spike (S)

CoV-2

. , SARS-CoV-2

, L-cathepsin.

TMPRSS2

Nucleocapsid (N)

, ACE2,

S

,

(ERGIC).

SARS-

Neuropili-1, L-SIGN, CD147

SARS-CoV-2

(virus-like particles-VLPs),

SARS-CoV-2.

pH,

" Andor Dragonfly

embrane (M)

Nikon Eclipse Ti2-E (SPARTACUSS),

,,

HeLa Kyoto, CLASPIN, RIF1 PCNA,

Ν

Nikon Eclipse Ti-E

,

,

EGFP-ORC1, MCM6, mCherry PCNA.

pН

Andor Revolution Nikon Perfect Focus System (PFS).

II.

I

1. CoV-2 -		,		SARS-
2.			· · · · · · · · · · · · · · · · · · ·	,
1.1.			SARS-	CoV-2
- 1.2. 1.3.	3D pH		SARS-CoV-2	-
1.4.			SARS-	CoV-2
- 1.5.		, pH,	SARS-CoV-2	_
2.1. RIF1, PCNA			ORC1, MCM6, CLA	ASPIN,

, , ,

,

III.

1 *

TEM

S

 ,
 ,
 mCherry
 ,

 4.
 VLP^{Wu}:M^{Ch},

 (VLP^{Wuhan}:(E, S, M&M-mCherry).
 ,

 U2OS (
),

 ACE2,
 TMPRSS2,

 ,
 3D

 ,
 3D

(. 2)¹⁵.

2. CoV-2

_

•

3D

Python Fiji.

SPARTACUSS (Single PARTicle Tracking Analysis in Cells Using Software Solutions).

(,). , SPARTACUSS, Gaussian blur, -

(.3). X Y, Z .
maximum intensity projection : maximum intensity x z y; maximum intensity y -

 $z \quad x; maximum intensity \quad z - x \quad y.$ () (.3 ,). $488 \quad (), 591 \quad ()$ (.3). $SPARTACUSS \quad : 3D$ $(x,y,z) \quad (.3).$

3.

SPARTACUSS. 3D Gaussian Blur, 3D), ((mCherry pHluorin). (maximum intensity х – z y; maximum intensity y – z x; maximum intensity z – x y) (),), () (). ((ZY-, ZX-, YX-). (Z), 2D (XY) 3D (XYZ). 1D-SARS-CoV-2 -M-pHluorin; -M-mCherry), (). SPARTACUSS, (10-20 /), Ζ . 2). (mNeonGreen. 3D. VLP^{Wu}:M^{Ch}. . 2). (. 2). . 2 (). VLP^{Wu}:M^{Ch}, SPATACUSS, 3D ACE2 **SPARTACUSS** 3D

 $VLP^{Wu}:M^{Ch}.$ Aberrior LIVE 610 (cabazitaxel, LIVE 610 10) • . 2), (-SARS-CoV-2 SARS-CoV-2 VLP^{Wu}:M^{Ch}, Anti-SARS-CoV-2 Spike S1 (CR3022 clone) . 2). (1.2. 16,17 SARS-CoV-2 , GFP VeroE6 SARS-CoV-2¹⁸. , 10-15 () 19–21 , 19,22–24 -1-GFP VLP^{Wu}:M^{Ch}, " ,, (). 49% (

4 ,).

-

4.	VLP ^{Wu} :M ^{Ch}	VeroE6 . SARS-CoV-2 VLP ^{Wu} :M ^{Ch} ,	VeroE6
		5:45 (, ;). ();
CoV-2 VLP ^{Wu} :M	1 ^{Ch} , n=41.		SARS-
	, n=37. . n=18.	- 24.0	VLP ^{Wu} :M ^{Ch}
E. , . , 5 ,	Dynol Rab-5 SAR LysoT	GFP. S-CoV-2 VLP ^{Wu} :M ^{Ch} . racker.	 Rab-
		²⁵ . –	()
	SPA	RTACUSS	-
,		, 17%	. 4 , 64% , 19% 3 , 36% (.
4).	,	, 5.24±6.8 .	, SPARTACUSS
CoV-2 VLP ^{Wu} :M ^{Ch}	30%	с 45	, SARS-
	, _	(.4 , Dynol 34-2 - 24.). - 1,
, (. 4).	,	, Dynol 34-2

() Rab-5a GFP Rab5a-(.4). pН 26 LysoTracker. SARS-CoV-2 VLP^{Wu}:M^{Ch} .4). (, -1-

, Rab-5 . , SARS-CoV-2 $VLP^{Wu}:M^{Ch}$.

1.3. pН VSV SARS-CoV-2 S 27–29 (fusion), SARS-CoV-2 pН pН Μ , 5 supereclitic pHluorin С pH 8, pH<7.5, pH<5³⁰. C-() pHluorin pН pHluorin,

(pH=8),

VLP^{Wuhan}:(E, S, N, M&M-mCherry&M-pHluorin).

pHluorin

63%		,	p]	pF Hluorin	1	
	3%	mCherry,	34%			
2/2	570	Ver	°oE6	(6).	nUluorin
2/3	pH					priuoim

,

nHharin	, M.mCl			M-pł	Iluorin	(``),		
-priuorin	M-IIICI	lerry	()) 100			
	VLP ^{Wu} :N	$M^{Ch}M^{pH}R$	Verol	E6	,				ACE	2
TMPRSS2 .		(),	549	Mr	Hluorin					
VLP ^{Wu} :M ^{Ch} M ^{pH} R	549	VeroE6		1 •1- F	nnuonn		pHluo	orin		
,		, M-mCh (Error Bars	pHluorin erry 3)	l	-			A549 n	(0 = 55, a). a
VeroE6 n = 93 .										
· VLP ^{Wu} :M ^{Ch} M ^{pH} R	549	VeroE	5	M-pHl	рн uorin.	рН	pН			
, VeroE6 n – 93		p (Error Bars	, Hluorin 5)			-		0). A549 n	= 55, a	a
-mCherry.		VLP ^{Wu} :M ^C	^h M ^{pH} R,	549	VeroE6	, rin	((0)		
		(Error Bars	5)		prindo			A549 n	= 55, a	a
VeroE6 n = 93.		pHlu	orin		549	VLP ^v VeroE	^{Vu} :M ^{Ch} I 26	M ^{pH} R : NS j	p>0.01	l;*
p<0.01. A549 n	= 55, a	VeroE6 n	= 93. 549 N	√eroE6		VLP ^V	^{Wu} :M ^{Ch} l	M ^{pH} R	t-	
a VeroE6 n = 93	8.				: NS p	>0.01; *	p<0.01	A54	19 n =	55,
pHluorin	VLP ^{Wu} t-	:M ^{Ch} M ^{pH} R					549	VeroE	6 :	NS
p>0.01; * p<0.01.	A549 1	n = 55, a pH	VeroE6 1 VLP ^W	n = 93. $u: M^{Ch}M$	^{pH} R,		549	VeroE6	pHluc 5	orin
p>0.01; * p<0.01.	t- A549 r	n = 55, a	VeroE6 1	n = 93.	(),			•	NS
M-mCherry M VLP ^{Wu} :M ^{Ch} M ^{pH} R	-pHluorir	n)	(-) () VeroE6			(,		,
	, (),	A54	pH 9	lluorin		,			•	

- TMDDSS2		,		ACE2	2,
I (VLP ^{Wu} :M ^{Ch} M	$MPRSS2.$ $M^{pH}, R),$	-	, 20	,	, 31.
	nF	Iluorin		-	,
mCherry.	pr	, -		ACE2 (100%).	TMPRSS2
		549	,		
				SARS-Co	V-2.
	ACE2	r	TMPRSS2		- 28%
			mCherry.	. 15%	pHluorin -
		57%			
			(.6)).	,
A549	-	VeroE6	•		SARS-CoV-2 - ACE2 TMPRSS2
		, , , , , , , , , , , , , , , , , , , ,	Charry (8004		pHluorin
	ACE2	TMPRSS2	Cheffy (89%)	20%). , ,
(6	рН,				
(.0).	,	pHl	uorin	,
		(. 6 pHluorin,).	, 1.4 1.6	a VeroE6 A549 pHluorin pH
A549 8	6.9	, Ve 90 (roE6 .6),	рН	8 6.3, ,

,

pH (. 6). (M-mCherry M-pHluorin)

> : pH

-

.

		pHluorin N- EGFP	,
	pHluorin N- EGFP		
VLP-WT MM VeroE6	4.1 ± 3.6 min	2.4 ± 3.7 min	$6.5 \pm 5.4 \text{ min}$
VLP-WT MM A549	$12.5 \pm 8.4 \text{ min}$	1.4 ± 3.7 min	$13.9 \pm 9.2 \text{ min}$
VLP-WT NM A549	$13 \pm 8.6 \text{ min}$	$7.0 \pm 10.0 \text{ min}$	$20.1\pm14.8~min$
VLP-Omi NM A549	$14.2 \pm 8.5 \text{ min}$	$2.9 \pm 6.9 \text{ min}$	17.1±10.1 min
VLP-del1 MM VeroE6	6.4 ± 5.4 min	2.8 ± 8.2 min	9.2 ± 8.9 min
VLP-del1 MM A549	16.7 ± 12.7 min	$1.7 \pm 1.6 \text{ min}$	18.4 ± 12.9 min
VLP-del1 MM A549	10.12 ± 8.72 min	3.61 ± 7.79 min	13.74 ± 11.57 min
VLP-OMI MM A549	$13.01 \pm 8.4 \text{ min}$	$\begin{array}{rrrr} 4.03 & \pm & 7.44 \\ \text{min} \end{array}$	17.04 ± 11.48 min
1			

•

VeroE6	,	pН

,

(

,

1).

,

/

4.1 ± 3.6

12.5

•

,

,

 \pm 8.4

pН,

,

pH (. 7 8),

 $, 2.4 \pm 3.7$

 1.4 ± 3.7

549 pH

pН

(. 6 ,).

•

22

1.4.

Furin

,

SARS-CoV SARS-CoV-2, (PRRA)

S1 S2	S	,]	Furin ³² .
Furin,					S2'	TMPRS	SS2
,		S			-	•	
,	:	,					
	(FC	CS)					
SARS-CoV-2	-		•				,
,		M-m0	Cherry, M-	pHluorin	S	,	
FCS (del-1) ^{33–37} .							
$VLP^{Wu(del-1)}:M^{Ch}M^{pH},R;$		VLP ^{Wuhan (}	del-1:(N, E,	S, M&M-	mCherry	y & M-pl	Hluorin,
T20 RNA).	549	,			ACE	2 TMF	PRSS2
$VLP^{Wu(del-1)}:M^{Ch}M^{pH},R,$,	р	Hluorin
			mCherry	- 89%	VLP	^{Wu} :M ^{Ch} M	^{[pH} , R
73% VLP ^{Wu(del-1)} : $M^{Ch}M^{pH}$,	R (. 9).		,			
pHluorin	× ×			-		(.9).
						-	
			рН				,
	(. 9 -	,	1).		,	
		,					
, pH			, -				
	(.10).					

VLP^{Wu}: M^{Ch}M^{pH}R, VLP^{Omi}: M^{Ch}M^{pH}R and VLP^{del-1}: M^{Ch}M^{pH}R 549.

	-	,		M-pl	Hluorin	(
),	M-pHluorin	M-mChe	rry		()
· VLP ^{Omi} : M ^{Ch} M ^{pH} I	(R and VLP ^{del-1} : M ^C). ^{Ch} M ^{pH} R		pHluorin	: VLP ^{Wu} : 54	M ^{Ch} M ^{pH} R 49
	p	Hiuorin	,		-nHluorii	n (0)
	, M-m(Cherry			prindorn.	ii (0).
n-55 VI P ^{Omi} .	(Error Ba M ^{Ch} M ^{pH} R n=48	ars) VI P ^{del-1} .	M ^{Ch} M ^{pH} R n-6	57	. VLP ^{Wu} :	$M^{Ch}M^{pH}R$
	(, VLP	M-mChern ^{Omi} : M ^{Ch} N	ry M-pHluor I ^{pH} R	rin) -		() ()
,	549 . ()	pHluorin -		VLP ^{del-1}	: M ^{Ch} M ^{pH} R.	
M ^{Ch} M ^{pH} R, M ^{Ch} M ^{pH} R n=55,	VLP ^{Omi} : M ^{Ch} M ^{pH}	V! R n=48	LP ^{Wu} : M ^{Ch} M ^p 549 . VLP ^{del-1} : M ^C	^H R, VLP ^{Omi} : M : NS p>0.01; Th M ^{pH} R n=62.	-pHluorin I ^{Ch} M ^{pH} R * p<0.01 -	VLP ^{del-1} t- VLP ^{Wu}
549 .	: ¹	VLP ^{Wu} : M ^{Cl}	^h M ^{pH} R, VLP ^{Or}	^{mi} : M ^{Ch} M ^{pH} R	VLP ^{del-1} :	M ^{Ch} M ^{pH} R
p>0.01; * p<0.01 n=62.	VLP ^{Wu} : M ^{Ch} M ^{pl}	^H R n=55,	VLP ^{Omi} : M ^C	^h M ^{pH} R n=48	VLP ^{del-1} :	M ^{Ch} M ^{pH} R
nHluorin						M-
prindonn	- 549 .		: V	LP ^{Wu} : M ^{Ch} M ^{pH}	R. VLP ^{Omi} :	M ^{Ch} M ^{pH} R
VLP ^{del-1} : M ^{Ch}	$M^{pH}R.$	~0.01 V	t- Ι D Wu. Μ ^{Ch} Mp	H R n=55 VI	DOmi. MChu	ApHR n-49
VLP ^{del-1} : M ^{Ch}	$M^{pH}R$ n=62.	\0.01 ₹		K II–33, V		/I ⁻ K II—40

VLP^{del-1}:M^{Ch}M^{pH}R.

				()	(, M-Cherry	M-
pHluorin)		()			-	,	
	pHluorin	,						
		(), pHluorin		,				

VLP ^{del-1} : M ^{Ch} M ^{pH} R, pHluorin	pHluorin : VLP^{Wu} : $M^{Ch}M^{pH}R$ 549 .
,	-pHluorin (0).
M-mCherry (Error Bars) VeroE6-VLP ^{del-1} :M ^{Ch} M ^{pH} n=41.	. VeroE6-VLP ^{Wu} : $M^{Ch}M^{pH}R$ n=93,
. $VLP^{Wu}:M^{Ch}M^{pH}$ and $VLP^{del-1}:M^{Ch}M^{pH}$	VeroE6 .
, pHluorin (Error Bars) n=93, VeroE6-VLP ^{del-1} :M ^{Ch} M ^{pH} n=41.	(0). . VeroE6-VLP ^{Wu} : $M^{Ch}M^{pH}R$
· VLP ^W VeroE6 · VLP ^{del-1} : $M^{Ch}M^{pH}$ n=41. ·	-pHluorin $VLP^{del-1}:M^{Ch}M^{pH}$, t- : NS p>0.01; * p<0.01 VeroE6-VLP ^{Wu} :M ^{Ch} M ^{pH} R -
VeroE6 . : VI t- $p<0.01$ VeroE6-VI $P^{Wu} \cdot M^{Ch} M^{pH} R n - 93$	$LP^{Wu}: M^{Ch}M^{pH} VLP^{del-1}: M^{Ch}M^{pH}.$: NS p>0.01; *
pHluorin -	M-
t- p>0.01; * p<0.01 VeroE6-VLP ^{Wu} :M ^{Ch} M ^{pH} R	(), (), () = ()
M-mCherry M-pHluorin) VLP ^{Wu} :M ^{Ch} M ^{pH} -	() , , ,
pHluorin . . (), -	,

FCS

,

SARS-CoV-2

SARS-

CoV-2	2 V	/eroE6						S 1	S2
		,		, FC	CS				
	37,38						•		
						-		FC	CS,
		,						Fu	rın
							,		
	-			•					
1.5).		-		,			,	
					SA	RS-CoV-	-2		
					SARS-Co	V-2		202	1.
								,	
			50			27	G		•
15			50	-	39,40	, 37,	5	,	
15		70	_		•	39	,		
						•		,	
		-		,			N, E, S		
	,					,			
	•	,				mCherr	y pHluorin	i. Խ.զ Ըհ Խ.զ թН	īD
	•	VI D Omicron.	NFS	M M_m	Cherry & M	-nHluorii	VLP^{om} T20 RNA)		·κ,
4	549	• LI .(.	IN, L, D,	101, 101-111	ACE2		S2.		
_	,	,		pHluorir	1				
	n	nCherry	-	89%	VLP ^{Wu} :M ⁰	${}^{Ch}M^{pH}R$	65% VLP ^{Or}	ⁿⁱ :M ^{Ch} M ^{pl}	^H R
(.	9).		,				pHluorin		
					•	T T1	,		
(0)					pHluoi	:1n		
(.	<i>y</i>).	_						(,
9,	,).	,						-	•
	,		,					:	
			,						
pН	lluorin ((. 13)							

14.

,

-
VLP^{Omi}:M^{Ch}N^ER, VLP^{Wu}:M^{Ch}N^ER, VLP^{Wu}:M^{Ch}M^{pH}R 549 N-EGFP (M-pHluorin ()) (), M-pHluorin/N-EGFP M-mCherry). : VLP^{Omi}:M^{Ch}N^E R N-EGFP VLP^{Wu}:M^{Ch}N^ER 549 EGFP N-EGFP (0). M-mCherry VLP^{Wu}: $M^{Ch}N^{E}R$ n=17, (Error Bars) VLP^{Omi}: $M^{Ch}N^{E}$ n=34. N-EGFP M-pHluorin : VLP^{Wu}:M^{Ch}M^{pH}R VLP^{Wu}:M^{Ch}N^ER 549 EGFP pHluorin N-EGFP M-mCherry pHluorin (0). (Error Bars) VLP^{Wu}: $M^{Ch}M^{pH}R$ n=55, A549 VLP^{Wu}:M^{Ch}N^ER n=17. N-EGFP -pHluorin VLP^{Wu}:M^{Ch}M^{pH}R, VLP^{Wu}:M^{Ch}N^ER, VLP^{Omi}:M^{Ch}N^ER. 549 : NS p>0.01; * p<0.01 VLP^{Wu}:M^{Ch}N^ER n=17, for VLP^{Omi}:M^{Ch}N^ER n=34 and VLP^{Wu}:M^{Ch}M^{pH}R n=55. : $VLP^{Wu}:M^{Ch}M^{pH}R$, $VLP^{Wu}:M^{Ch}N^{E}R$ $VLP^{Omi}:M^{Ch}N^{E}R$. 549 : NS $VLP^{Wu}:M^{Ch}N^{E}R$ n=17, $VLP^{Omi}:M^{Ch}N^{E}R$ n=34 $VLP^{Wu}:M^{Ch}M^{pH}R$ n=55. p>0.01; * p<0.01 M-N-EGFP pHluorin A549 : VLP^{Wu}:M^{Ch}M^{pH}R, VLP^{Wu}:M^{Ch}N^ER VLP^{Omi}:M^{Ch}N^ER. t-: NS p>0.01; * p<0.01 VLP^{Wu}: $M^{Ch}N^{E}R$ n=17, VLP^{Omi}: $M^{Ch}N^{E}R$ n=34 VLP^{Wu}: $M^{Ch}M^{pH}R$ n=55. VeroE6 549) (, M-mCherry N-EGFP) (VLP^{Wu}:M^{Ch}N^ER 549 N-EGFP VLP^{Omi}:M^{Ch}N^ER. () VLP^{Wu}:N^{eG}M^{Ch}R N-EGFP $VLP^{Wu}:M^{Ch}M^{pH}R$ (. 14). M-pHluorin

36

EGFP , 18 (• N-EGFP) (M-mCherry N-EGFP) M-mCherry , Ζ N-EGFP , (. 15). , , $VLP^{Wu}:M^{Ch}M^{pH}R$ (1) M-pHluorin ,

N-EGFP

,

$VLP^{W_{u}}:N^{eG}M^{Ch}R$ (. 14 , ,) .

•

	(),	N-EGFP	
. , . , Z- ,	,	M-mCherry N-EGFP M-mCherry	Л-mCherry.
, SARS-CoV-2 ^{Omicron} :(E, S, M&	, &M-mCherry, N&N-eGFI	VLP ^{Omi} :M ^{Ch} N ^{eE} I P, T20 RNA).	R, - 1%
VLP ^{Wu} :M ^{Ch} N ^{eE} R 2-3%	$VLP^{Omi}:M^{Ch}N^{eE}R.$,
- VLP ^{Omi} :M ^{Ch} M ^{pH} R- 90%. VLP ^O N-EGFP	^{Dmi} :M ^{Ch} N ^{eE} R,	, M	80% nCherry,
23% -			
$VLP^{Wu}:M^{Ch}N^{eE}R$ (. 14). ,		
(.14).	,		,
	N-EGFP		

(. 14).

•

,

(14 , 1).

,

,

,

(.14 , ,16 17),

,

,

pH.

•

,

2.1.

PCNA

,

HeLa Kyoto 41. chromosome)

,

MCM6 PCNA, PCNA,

,

HeLa Kyoto

(. 18 , , , ,). Rif-1, Orc-1, Mcm-6, Claspin

BAC (bacterial artificial

, EGFP - ORC1, RIF1, Claspin, mCherry.

(. 18 , ,). , •

42

PCNA(,) ± .

,

G1

•

•

HeLa Kyoto , $15 h 58 min \pm 1 h 56 min.$

, G15 . 25 ± 1 13 , S 7 ± 49 , G2 2 38 ± 45 , M 55 ± 34 . ,

,

•

•

,

(. 19).

,

,

9.

1 01 11 1	,			
G1	2			,
	-	G2	(. 20
,).				

(

20.

•__

_

_

-. .

S

•

		• HeLa Kvoto	
RIF1-EGFP	PCNA-mCherry.	nolla nyötö	,
MCM6-EGFP	PCNA-mCherry	HeLa Kyoto	,
		HeLa Kyoto	,
ORC1-EGFP	PCNA-mCherry.	HeLa Kvoto	
CLASPIN-EGFP	PCNA-mCherry.		,
PCNA-E0	GFP PCNA-mChe	HeLa Kyoto rry.	,
	15 58	. ES-S	, MS-
, LS- S	_		
_ ()	Sobel		
<u>+</u>	•		

2.3. RIF1

21.

RIF1-EGFP/mCherry-PCNA HeLa Kyoto

MCM6 2.4.

MCM6 RIF1

,

MCM6

MCM2-7

.

CM2-7

RIF1. MCM6

			48.40	ORC	, D ID 1			
-			^{40,49} . N	ICM6	RIFI			
(. 18 ,). RIF1				. MCN	<i>I</i> 16	
	MCM6	G1	30- S	G2 (, . 20 .).			
	,	G1	,	100	, ,.	7	S,	
300	•		, (22)				
	G1		(.	22).	-	MCM6	•	
	,	,			GI	WICINIO, -	,	
		•			-		S , RIF1,	
	S	G2	,	MCM6		,	МСМ6,	
			,	-				

•

MCM6-EGFP/mCherry-PCNA HeLa

Kyoto

2.5. ORC1

, - ORC1. - , , origin recognition complex (ORC).

. ORC,			S ,				
			CM2-7	M	CDT1	CDC6	
		0,51	50,51		-		
ORC1		•	,				
G2 ⁵² .			•	S			
	RC1	ORC1	,	,			
			. 20 ,).	(
		,			G1 ,		
		S		S		2,	
. 23).	(. 20	(G2		,	

,

, PCNA-mCherry, - S ,

G2, , , , ORC1 G2, 50-55.

ORC1-EGFP/mCherry-PCNA HeLa

Kyoto

2.6. CLASPIN

Claspin	,		Chk1	
	56	, CL SPIN	,	

(Origin Firing) 57.

,

•

24.

CLASPIN-EGFP/mCherry-PCNA

HeLa Kyoto

•

RIF1 M/G1 G2/M

G1,

,

,

3

,

,

2

S

, RIF1

,

,

,

,

,

RIF1.

MCM6

,

• S

ORC1 , G1

, Μ

S

,

,

MCM6

MCM6,

S

,

CLASPIN S G2/M. •

(40 B)

,

,

https://covidynamics.imb.bas.bg/.

3.

,

,

"DNArepairK: An interactive database for exploring the impact of anticancer drugs onto the dynamics of DNA repair proteins".

:

,

V.

https://covidynamics.imb.bas.bg/ "DNArepairK: An interactive database for exploring the impact of anticancer drugs onto the dynamics of DNA repair proteins.

2.

_

https://covidynamics.imb.bas.bg/ ,,DNArepairK: An

,

interactive database for exploring the impact of anticancer drugs onto the dynamics of DNA repair proteins

, . - , , , , -

, VeroE6 ^{32,64–66}, SARS-CoV-2. , ACE2

TMPRSS2,

- . , , , , , pH -

Omicron

4.

S ^{70–72}.

,

,

G1,

, 76–78

,

,

Orc1

,

.

,

Orc1

S

,

Μ

, SARS-CoV-2

,

,

,

_

,

,

•

,

,

VI.

1.	, S2	ARS-CoV-2 -				
2.	,	-	-			
3.	CoV-2 -	pH			-	SARS-
4.		SARS-CoV-2 S	S			-
5.	SARS-CoV-2	-			•	RAb5a
6.	Omicron SARS-CoV-2	, ,	,	() del-1	/ S SARS-COV-2	-
7.			,		рН, -	VeroE6
8.	CLASPIN, PCNA	A549 , VeroE6 A			- RIF1, ORC1,	МСМ6,

PCNA

			,	Sabal		ICNA
4.	,			50001	COVIDynamics	DNArepairK Database,
	SARS-CoV-2		-	,		,
5.		5	•			-
	_			•		•
			pH,		_	,
			-			

,

67

- Aleksandar Atemin, Anelia Ivanova, Wiley Peppel, Rumen Stamatov, Rodrigo Gallegos, Haley Durden, Sonya Uzunova, Michael D. Vershinin, Saveez Saffarian and Stoyno S. Stoynov. "Kinetic landscape of single virus-like particles highlights the efficacy of SARS-Cov-2 internalization". Viruses. Impact Factor: 3.8 (2023)
- 2. Aleksandar Sergeev Atemin, Aneliya Ivanova, Petar-Bogomil Kanev, Sonya Uzunova, Marina Nedelcheva-Veleva, Stoyno Stoynov. **"Dynamics of replication-associated protein levels through the cell cycle"**. IJMS. Impact Factor: **4.9** (2023)
- Babukov, Y., Aleksandrov, R., Ivanova, A., Atemin, A., & Stoynov, S. "DNArepairK: An interactive database for exploring the impact of anticancer drugs onto the dynamics of DNA repair proteins" *Biomedicines*, 9(9), 1238. Impact Factor: 4.757 (2021)
 - Radoslav Aleksandrov, Anton Dotchev, Ina Poser, Dragomir Krastev, Georgi Georgiev, Greta Panova, Yordan Babukov, Georgi Danovski, Teodora Dyankova, Lars Hubatsch, Aneliya Ivanova, Aleksandar Atemin, Marina N. Nedelcheva-Veleva, Susanne Hasse, Mihail Sarov, Frank Buchholz, Anthony A. Hyman, Stephan W. Grill, Stoyno S. Stoynov. "Protein Dynamics in Complex DNA Lesions". (2018). *Molecular cell.* 69(6). 1046-1061. Impact Factor: 14.548 (2018).
 - Kanev, P. B., Atemin, A., Stoynov, S., & Aleksandrov, R. (2023, September).
 "PARP1 roles in DNA repair and DNA replication: The basi(c)s of PARP inhibitor efficacy and resistance". In Seminars in Oncology. WB Saunders. Impact Factor: 3.0 (2023).
 - Ivanova, A., Atemin, A., Uzunova, S., Danovski, G., Aleksandrov, R., Stoynov, S., & Nedelcheva-Veleva, M. (2021). "The effect of Dia2 protein deficiency on the cell cycle, cell size, and recruitment of Ctf4 protein in Saccharomyces cerevisiae". *Molecules*, 27(1), 97. Impact Factor: 4.927 (2021).
 - 1. 2024 A.Atemin et al."Dynamics of replication-associated protein levels through the cell cycle", EMBO Conference,

- 2. 2023 A.Atemin et al. "Kinetics of SARS-CoV-2 entry into cells", IPols,
- 4. 2020 A.Atemin et al. "Dia2 at the crossroad between DNA replication and cell's size homeostasis.", IPols, , (
- 5. 2019 A.Atemin et al. "The fine-tuned balance between expression and degradation regulates the cell fate", ECHG, ,
- 6. 2019 A.Atemin et al. "Analysis of the key replication protein Claspin and its yeast analogue Ctf4", , , , , ,
- 7. 2019 A.Atemin et al. "Dynamic Changes in the Replication Complex During Normal and Perturbed Replication", Humbolt Kolleg ,
- 8. 2018 A.Atemin et al. "Ctf4 in the context of replication", FEBS 2018,
- 9. 2017 A.Atemin et al. "Dynamic Changes in the Replication Complex During Normal and Perturbed Replication", ICGEB,
- 10.2017 A.Atemin et al. "Dia2-mediated control of Ctf4 in the context of replication complex integrity", FEBS 2017,
- 11.2016 A.Atemin et al. "Ctf4 dynamics",
- 1. Poser, I. *et al.* BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. *Nat. Methods* **5**, 409–415 (2008).
- 2. Song, B. D., Yarar, D. & Schmid, S. L. An assembly-incompetent mutant establishes a requirement for dynamin self-assembly in clathrin-mediated endocytosis in vivo. *Mol. Biol. Cell* **15**, 2243–2252 (2004).
- 3. Swann, H. *et al.* Minimal system for assembly of SARS-CoV-2 virus like particles. *Sci. Rep.* **10**, 1–5 (2020).
- 4. Gourdelier, M. *et al.* Optimized production and fluorescent labeling of SARS-CoV-2 virus-like particles. *Sci. Rep.* **12**, 1–15 (2022).
- 5. Sankaranarayanan, S., De Angelis, D., Rothman, J. E. & Ryan, T. A. The use of pHluorins for optical measurements of presynaptic activity. *Biophys. J.* **79**, 2199–2208 (2000).
- 6. Kurki, P., Vanderlaan, M., Dolbeare, F., Gray, J. & Tan, E. M. Expression of proliferating cell nuclear antigen (PCNA)/cyclin during the cell cycle. *Exp. Cell Res.* **166**, 209–219 (1986).
- 7. Somanathan, S., Suchyna, T. M., Siegel, A. J. & Berezney, R. Targeting of PCNA to sites of DNA replication in the mammalian cell nucleus*. *J. Cell. Biochem.* **81**, 56–67 (2001).
- 8. Schonenberger, F., Deutzmann, A., Ferrando-May, E. & Merhof, D. Discrimination of cell cycle

phases in PCNA-immunolabeled cells. BMC Bioinformatics 16, 180 (2015).

- 9. Sasaki, K., Kurose, A. & Ishida, Y. Flow cytometric analysis of the expression of PCNA during the cell cycle in hela cells and effects of the inhibition of DNA synthesis on it. *Cytometry* **14**, 876–882 (1993).
- 10. Danovski, G. *et al.* CellTool: An Open-Source Software Combining Bio-Image Analysis and Mathematical Modeling for the Study of DNA Repair Dynamics. *Int. J. Mol. Sci.* **24**, (2023).
- 11. Schindelin, J. et al. Fiji an Open platform for biological image analysis. Nat. Methods 9, (2009).
- 12. Tan, E., Chin, C. S. H., Lim, Z. F. S. & Ng, S. K. HEK293 Cell Line as a Platform to Produce Recombinant Proteins and Viral Vectors. *Front. Bioeng. Biotechnol.* **9**, 1–9 (2021).
- 13. Sharma, A. *et al.* Structural stability of SARS-CoV-2 virus like particles degrades with temperature. *Biochem. Biophys. Res. Commun.* **534**, 343–346 (2021).
- 14. Xu, R., Shi, M., Li, J., Song, P. & Li, N. Construction of SARS-CoV-2 Virus-Like Particles by Mammalian Expression System. *Front. Bioeng. Biotechnol.* **8**, 1–6 (2020).
- 15. Zhang, Y. *et al.* Single particle tracking reveals SARS-CoV-2 regulating and utilizing dynamic filopodia for viral invasion. *Sci. Bull.* **68**, 2210–2224 (2023).
- 16. Huang, R. *et al.* Betanodavirus-like particles enter host cells via clathrin-mediated endocytosis in a cholesterol-, pH- and cytoskeleton-dependent manner. *Vet. Res.* **48**, 1–17 (2017).
- Zepeda-Cervantes, J., Ramírez-Jarquín, J. O. & Vaca, L. Interaction Between Virus-Like Particles (VLPs) and Pattern Recognition Receptors (PRRs) From Dendritic Cells (DCs): Toward Better Engineering of VLPs. *Front. Immunol.* 11, 1–22 (2020).
- 18. Ogando, N. S. *et al.* SARS-coronavirus-2 replication in Vero E6 cells: Replication kinetics, rapid adaptation and cytopathology. *J. Gen. Virol.* **101**, 925–940 (2020).
- 19. Prichard, K. L., O'Brien, N. S., Murcia, S. R., Baker, J. R. & McCluskey, A. Role of Clathrin and Dynamin in Clathrin Mediated Endocytosis/Synaptic Vesicle Recycling and Implications in Neurological Diseases. *Front. Cell. Neurosci.* **15**, (2022).
- 20. Cocucci, E., Gaudin, R. & Kirchhausen, T. Dynamin recruitment and membrane scission at the neck of a clathrin-coated pit. *Mol. Biol. Cell* **25**, 3595–3609 (2014).
- 21. Antonny, B. *et al.* Membrane fission by dynamin: what we know and what we need to know. *EMBO J.* **35**, 2270–2284 (2016).
- 22. Cheng, X. *et al.* Dynamin-dependent vesicle twist at the final stage of clathrin-mediated endocytosis. *Nat. Cell Biol.* **23**, 859–869 (2021).
- 23. Hill, E., Van Der Kaay, J., Downes, C. P. & Smythe, E. The role of dynamin and its binding partners in coated pit invagination and scission. *J. Cell Biol.* **152**, 309–323 (2001).
- 24. Štimac, I. *et al.* Dynamin inhibitors prevent the establishment of the cytomegalovirus assembly compartment in the early phase of infection. *Life* **11**, (2021).
- 25. Loerke, D. *et al.* Cargo and dynamin regulate clathrin-coated pit maturation. *PLoS Biol.* **7**, 0628–0639 (2009).
- 26. Wang, C. *et al.* Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes. *Adv. Drug Deliv. Rev.* **113**, 87–96 (2017).

- 27. Yang, Y., Mengran Yu, Zhang, S., Ma, G. & Su, Z. Adsorption of virus-like particles on ion exchange surface: Conformational changes at different pH detected by dual polarization interferometry. *J. Chromatogr. A* **1408**, 161–168 (2015).
- 28. Ausar, S. F., Foubert, T. R., Hudson, M. H., Vedvick, T. S. & Middaugh, C. R. conformational stability and disassembly of norwalk virus-like particles: Effect of ph and temperature. *J. Biol. Chem.* **281**, 19478–19488 (2006).
- 29. Maassen, S. J., van der Schoot, P. & Cornelissen, J. J. L. M. Experimental and Theoretical Determination of the pH inside the Confinement of a Virus-Like Particle. *Small* **14**, 1–7 (2018).
- 30. Martineau, M. *et al.* Semisynthetic fluorescent pH sensors for imaging exocytosis and endocytosis. *Nat. Commun.* **8**, 1–10 (2017).
- 31. Syed, A. M. *et al.* Rapid assessment of SARS-CoV-2–evolved variants using virus-like particles. *Science* (80-.). **374**, 1626–1632 (2021).
- 32. Rossi, G. A., Sacco, O., Mancino, E., Cristiani, L. & Midulla, F. Differences and similarities between SARS-CoV and SARS-CoV-2: spike receptor-binding domain recognition and host cell infection with support of cellular serine proteases. *Infection* **48**, 665–669 (2020).
- 33. Lau, S. Y. *et al.* Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction. *Emerg. Microbes Infect.* **9**, 837–842 (2020).
- 34. Sasaki, M. *et al.* SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient cells. *PLoS Pathog.* **17**, 1–17 (2021).
- 35. Harvey, W. T. *et al.* SARS-CoV-2 variants, spike mutations and immune escape. *Nat. Rev. Microbiol.* **19**, 409–424 (2021).
- 36. Peacock, T. P. *et al.* The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. *Nat. Microbiol.* **6**, 899–909 (2021).
- 37. Lubinski, B. & Whittaker, G. R. The SARS-CoV-2 furin cleavage site: natural selection or smoking gun? *The Lancet Microbe* **4**, e570 (2023).
- 38. Hoffmann, M., Kleine-Weber, H. & Pöhlmann, S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. *Mol. Cell* **78**, 779-784.e5 (2020).
- 39. Hui, K. P. Y. *et al.* SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. *Nature* **603**, 715–720 (2022).
- 40. Syed, A. M. *et al.* Omicron mutations enhance infectivity and reduce antibody neutralization of SARS-CoV-2 virus-like particles. *Proc. Natl. Acad. Sci. U. S. A.* **119**, 1–7 (2022).
- 41. Poser, I. *et al.* BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. *Nat Methods* **5**, 409–415 (2008).
- 42. Raghuraman, B. K. *et al.* Median-Based Absolute Quantification of Proteins Using Fully Unlabeled Generic Internal Standard (FUGIS). *J. Proteome Res.* **21**, 132–141 (2022).
- 43. Essers, J. *et al.* Nuclear dynamics of PCNA in DNA replication and repair. *Mol Cell Biol* **25**, 9350–9359 (2005).
- 44. Hiraga, S. I. *et al.* Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7mediated phosphorylation of the MCM complex. *Genes Dev.* **28**, 372–383 (2014).
- 45. Hiraga, S. *et al.* Human RIF1 and protein phosphatase 1 stimulate DNA replication origin licensing but suppress origin activation. *EMBO Rep.* e201641983 (2017) doi:10.15252/embr.201641983.
- 46. Foti, R. *et al.* Nuclear Architecture Organized by Rif1 Underpins the Replication-Timing Program. *Mol. Cell* **61**, 260–273 (2016).
- 47. Malzl, D. *et al.* RIF1 regulates early replication timing in murine B cells. *Nat. Commun.* **14**, 1–18 (2023).
- 48. Symeonidou, I. E. *et al.* Multi-step loading of human minichromosome maintenance proteins in live human cells. *J. Biol. Chem.* **288**, 35852–35867 (2013).
- 49. Deegan, T. D., Mukherjee, P. P., Fujisawa, R., Polo Rivera, C. & Labib, K. CMG helicase disassembly is controlled by replication fork DNA, replisome components and a ubiquitin threshold. *Elife* **9**, (2020).
- 50. Tatsumi, Y., Ohta, S., Kimura, H., Tsurimoto, T. & Obuse, C. The ORC1 cycle in human cells: I. Cell cycle-regulated oscillation of human ORC1. *J. Biol. Chem.* **278**, 41528–41534 (2003).
- 51. Ohta, S., Tatsumi, Y., Fujita, M., Tsurimoto, T. & Obuse, C. The ORC1 cycle in human cells: II. Dynamic changes in the human ORC complex during the cell cycle. *J. Biol. Chem.* **278**, 41535–41540 (2003).
- 52. Kara, N., Hossain, M., Prasanth, S. G. & Stillman, B. Orc1 binding to mitotic chromosomes precedes spatial patterning during G1 phase and assembly of the origin recognition complex in human cells. *J. Biol. Chem.* **290**, 12355–12369 (2015).
- 53. DePamphilis, M. L. The 'ORC cycle': A novel pathway for regulating eukaryotic DNA replication. *Gene* **310**, 1–15 (2003).
- 54. Méndez, J. & Stillman, B. Chromatin Association of Human Origin Recognition Complex, Cdc6, and Minichromosome Maintenance Proteins during the Cell Cycle: Assembly of Prereplication Complexes in Late Mitosis. *Mol. Cell. Biol.* **20**, 8602–8612 (2000).
- 55. Kreitz, S., Ritzi, M., Baack, M. & Knippers, R. The Human Origin Recognition Complex Protein 1 Dissociates from Chromatin during S Phase in HeLa Cells. *J. Biol. Chem.* **276**, 6337–6342 (2001).
- 56. Peschiaroli, A. *et al.* SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. *Mol Cell* **23**, 319–329 (2006).
- 57. Hsiao, H.-W., Yang, C.-C. & Masai, H. Roles of Claspin in regulation of DNA replication, replication stress responses and oncogenesis in human cells. *Genome Instab. Dis.* **2**, 263–280 (2021).
- Bennett, L. N. & Clarke, P. R. Regulation of Claspin degradation by the ubiquitin-proteosome pathway during the cell cycle and in response to ATR-dependent checkpoint activation. *FEBS Lett.* 580, 4176–4181 (2006).
- 59. Hou, Y. J. *et al.* SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. *Cell* **182**, 429-446.e14 (2020).
- 60. Essaidi-Laziosi, M. *et al.* Estimating clinical SARS-CoV-2 infectiousness in Vero E6 and primary airway epithelial cells. *The Lancet Microbe* **2**, e571 (2021).
- 61. Melis, R., Braca, A., Pagnozzi, D. & Anedda, R. The metabolic footprint of Vero E6 cells highlights the key metabolic routes associated with SARS-CoV-2 infection and response to drug combinations. *Sci. Rep.* **14**, 1–12 (2024).

- 62. Aiewsakun, P. *et al.* Systematic Exploration of SARS-CoV-2 Adaptation to Vero E6, Vero E6/TMPRSS2, and Calu-3 Cells. *Genome Biol. Evol.* **15**, 1–21 (2023).
- 63. Ogando, N. S. *et al.* SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology. *J. Gen. Virol.* **101**, 925–940 (2020).
- 64. Emeny, J. M. & Morgan, M. J. Regulation of the interferon system: evidence that Vero cells have a genetic defect in interferon production. *J. Gen. Virol.* **43**, 247–252 (1979).
- 65. Wang, L. *et al.* Susceptibility to SARS-CoV-2 of cell lines and substrates commonly used to diagnose and isolate influenza and other viruses. *Emerg. Infect. Dis.* **27**, 1380–1392 (2021).
- 66. Cagno, V. SARS-CoV-2 cellular tropism. *The Lancet Microbe* 1, e2–e3 (2020).
- 67. Letoha, A., Hudák, A. & Letoha, T. Exploring the Syndecan-Mediated Cellular Internalization of the SARS-CoV-2 Omicron Variant. *Int. J. Mol. Sci.* **24**, (2023).
- 68. Hudák, A., Letoha, A., Szilák, L. & Letoha, T. Contribution of syndecans to the cellular entry of SARS-CoV-2. *Int. J. Mol. Sci.* 22, 1–27 (2021).
- 69. Hoffmann, M., Kleine-Weber, H. & Pöhlmann, S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. *Mol. Cell* **78**, 779-784.e5 (2020).
- 70. Nicolini, C., Kendall, F. & Giaretti, W. Objective identification of cell cycle phases and subphases by automated image analysis. *Biophys. J.* **19**, 163–176 (1977).
- 71. Zerjatke, T. *et al.* Quantitative Cell Cycle Analysis Based on an Endogenous All-in-One Reporter for Cell Tracking and Classification. *Cell Rep.* **19**, 1953–1966 (2017).
- 72. Guo, X. & Chen, L. From G1 to M: a comparative study of methods for identifying cell cycle phases. *Brief. Bioinform.* **25**, 1–10 (2024).
- 73. Noordermeer, S. M. *et al.* The shieldin complex mediates 53BP1-dependent DNA repair. *Nature* **560**, 117–121 (2018).
- 74. Ochs, F. *et al.* Stabilization of chromatin topology safeguards genome integrity. *Nature* **574**, 571–574 (2019).
- 75. Gnan, S. *et al.* Nuclear organisation and replication timing are coupled through RIF1–PP1 interaction. *Nat. Commun.* **12**, 1–10 (2021).
- 76. Masai, H., Matsumoto, S., You, Z., Yoshizawa-Sugata, N. & Oda, M. Eukaryotic chromosome DNA replication: where, when, and how? *Annu Rev Biochem* **79**, 89–130 (2010).
- 77. Cheng, L. *et al.* Expression Profile and Prognostic Values of Mini-Chromosome Maintenance Families (MCMs) in Breast Cancer. *Med. Sci. Monit. Int. Med. J. Exp. Clin. Res.* **26**, e923673 (2020).
- 78. Symeonidou, I. E. *et al.* Multi-step loading of human minichromosome maintenance proteins in live human cells. *J Biol Chem* **288**, 35852–35867 (2013).
- 79. Liu, Z. *et al.* MCM family in HCC: MCM6 indicates adverse tumor features and poor outcomes and promotes S/G2 cell cycle progression. *BMC Cancer* **18**, 200 (2018).
- 80. Blow, J. J. & Dutta, A. Preventing re-replication of chromosomal DNA. *Nat Rev Mol Cell Biol* **6**, 476–486 (2005).

- 81. Komata, M., Bando, M., Araki, H. & Shirahige, K. The Direct Binding of Mrc1, a Checkpoint Mediator, to Mcm6, a Replication Helicase, Is Essential for the Replication Checkpoint against Methyl Methanesulfonate-Induced Stress. *Mol. Cell. Biol.* **29**, 5008–5019 (2009).
- 82. Bareti , D. *et al.* Cryo-EM Structure of the Fork Protection Complex Bound to CMG at a Replication Fork. *Mol. Cell* **78**, 926-940.e13 (2020).
- 83. Lou, H. *et al.* Mrc1 and DNA Polymerase Function Together in Linking DNA Replication and the S Phase Checkpoint. *Mol. Cell* **32**, 106–117 (2008).
- 84. Kumagai, A. & Dunphy, W. G. Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. *Mol. Cell* **6**, 839–849 (2000).